BMB 829

Fall 2016

Tuesdays and Thursdays, 9:10 AM-10:00AM

Room 111 Biochemistry

Course coordinator: Honggao Yan, yanh@msu.edu

Instructors:

Melinda Frame	B7 CIPS Bldg	432-2327	framem@msu.edu
A. Daniel Jones	215A Biochemistry	432-7126	jonesar4@msu.edu
Louis King	5112 BPS Bldg	355-1536	kingl@msu.edu
Jeff Landgraf	S18 Plant Biology	432-9814	landgra1@msu.edu
Erik Martinez-Hackert	509A Biochemistry	355-1604	emh@msu.edu
Honggao Yan	313A Biochemistry	353-3978	yanh@msu.edu

<u>Texts:</u> No text; material provided by instructors

Exams:

Midterm: Tuesday, October 25th, 7-9 p.m., Rm 111 BMB (Note: exam at night) No lecture this day.

The Midterm Exam will cover materials provided by the first three lecturers. The final exam will cover materials by the remaining three lecturers only.

Final: Thursday December 15th, 10:00 a.m. – 12:00 p.m., Room 111 BMB

Absence from examination: Absence from any examination will be on the basis of a written statement from a physician stating that the student was unable to attend the exam to be presented to Dr. Yan. Other matters can be taken up with Dr. Yan but must constitute serious problems.

Problem Set:

Each instructor during or upon completion of his or her lecture series will provide a take home problem set. It is expected that each student will work INDEPENDENTLY on the problem set, unless otherwise instructed. Details of each problem set will be announced by the corresponding instructor.

Grading:

Each lecture counts 10 points, 7 of which from exam and 3 from problem set. The total of points is 280, 196 of which from two exams and 84 from eight problem sets (1 Problem set from each instructor). Course grades will be curved.

Office Hours: Appointments can be arranged with individual faculty.

Course Objectives:

The course seeks to introduce students to modern structural/analytical and molecular techniques, including confocal microscopy, mass spectrometry, flow cytometry, next-generation sequencing and gene expression analysis, x-ray crystallography analysis of protein structure and interactions, NMR, isothermal titration calorimetry, and surface plasmon resonance. It provides methodological information that goes beyond the textbook basics on molecular biology, optical imaging and protein chemistry.

Course materials and announcements can be accessed using the MSU D2L system. Students are expected to monitor this site for assignments and other important information.

BMB 829 Lecture Schedule: Fall 2016

	1		
Thr. 9/1	Landgraf	DNA sequencing, genotyping, and gene expression analysis	
Tue. 9/6	Landgraf	DNA sequencing, genotyping, and gene expression analysis	
Thr. 9/8	Landgraf	DNA sequencing, genotyping, and gene expression analysis	
Tue. 9/13	King	Introduction to Flow Cytometry and what it does	
Thr. 9/15	King	The flow cytometer	
Tue. 9/20	King	Simple phenotyping – protocol and data analysis	
Thr. 9/22	King	The cell cycle – protocol and data analysis	
Tue. 9/27	Jones	Mass Spectrometry: Ionization methods and metabolite identification	
Thr. 9/29	Jones	Mass Spectrometry: Quantitative metabolite analysis using GC/MS and LC/MS	
Tue. 10/4	Jones	Mass Spectrometry: Stable isotope tracers and their application for	
		pathway elucidation and flux analysis	
Thr. 10/6	Jones	Mass Spectrometry: Identification of proteins and peptides	
Tue.10/11	Jones	Mass Spectrometry: Characterization of post-translational modifications	
		of proteins	
Thr. 10/13	Jones	Mass Spectrometry: Techniques for probing tertiary and quaternary	
		structure of proteins	
Tue. 10/18	Frame	Confocal Microscopy: Optics, fusion proteins, diffusion	
Thr. 10/20	Frame	Confocal Microscopy: FRET, Spectral Imaging; Laser Capture	
		Microscopy	
Tue. 10/25		Evening midterm – no class. Covers through October 13 Lecture.	
Thr. 10/27	Yan	Principles of NMR: Basics and observables	
Tue. 11/1	Yan	Principles of NMR: Biomolecular experimentation	
Thr. 11/3	Yan	Applications of NMR: Structure and interactions	
Tue. 11/8	Yan	Applications of NMR: Dynamics and catalysis	
Thr. 11/10	Yan	Macromolecular binding. Thermodynamic and kinetic parameters	
Tue. 11/15	Yan	ITC and SPR analysis of binding	
Thr. 11/17	Martinez-Hackert	From Gene Sequence to Protein Structure & Function:	
		Bioinformatic analysis for cloning design	
Tue. 11/22	Martinez-Hackert	Gene cloning approaches and cloning objectives	
	mber 24: Thanksgiving	g Day, no class	
Tue. 11/29	Martinez-Hackert	Gene expression systems for protein production	
Thr. 12/1	Martinez-Hackert	Protein purification	
Tue. 12/6	Martinez-Hackert	Crystallization and x-ray structure determination	
Thr. 12/8	Martinez-Hackert	Structural analysis and interpretation	

Final: Thursday December 15th, 10:00 a.m. – 12:00 p.m., Room 111 Biochemistry.